Generalized Exponential Euler Polynomials and Exponential Splines
نویسندگان
چکیده
منابع مشابه
Generalized Exponential Euler Polynomials and Exponential Splines
Here presented is constructive generalization of exponential Euler polynomial and exponential splines based on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian fractions and the set of concepts related to spline functions. The applications of generalized exponential Euler polynomials in series transformations and expansions are also given.
متن کاملBeyond B-splines: exponential pseudo-splines and subdivision schemes reproducing exponential polynomials
The main goal of this paper is to present some generalizations of polynomial B-splines, which include exponential B-splines and the larger family of exponential pseudo-splines. We especially focus on their connections to subdivision schemes. In addition, we generalize a well-known result on the approximation order of exponential pseudo-splines, providing conditions to establish the approximatio...
متن کاملExponential Pseudo-Splines: looking beyond Exponential B-splines
Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reprod...
متن کاملInvestigating Geometric and Exponential Polynomials with Euler-Seidel Matrices
This work is based on the Euler-Seidel matrix method [11] which is related to algorithms, combinatorics and generating functions. This method is quite useful to investigate properties of some special numbers and polynomials. In this paper we consider the Euler-Seidel matrix method for some combinatorial numbers and polynomials. This method is relatively easier than the most of combinatorial met...
متن کاملGeneralized Stirling numbers, exponential Riordan arrays and orthogonal polynomials
We define a generalization of the Stirling numbers of the second kind, which depends on two parameters. The matrices of integers that result are exponential Riordan arrays. We explore links to orthogonal polynomials by studying the production matrices of these Riordan arrays. Generalized Bell numbers are also defined, again depending on two parameters, and we determine the Hankel transform of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Journal of Discrete Mathematics
سال: 2011
ISSN: 2161-7635,2161-7643
DOI: 10.4236/ojdm.2011.12005